在通常情况下,增加给水流量,水位应该是增加的,但是由于给水温度低于汽包内饱和水的温度,给水吸收了原有饱和水中的部分热量使水面下气泡容积减小,所以扰动初期水位不会立即升高。当水面下气泡容积的变化过程逐渐平衡,水位就反映出汽包中储水量的增加而逐渐上升的趋势,最后当水面下气泡容积不再变化时,由于进、出物质的不平衡,水位将以一定的速度直线上升。图1中曲线H1为不考虑水面下气泡容积变化,仅考虑物质不平衡时水位变化曲线,为积分环节的特性曲线;H3为不考虑物质不平衡关系,只考虑给水流量变化时,水面下气泡容积变化所引起的水位变化,可以认为是惯性环节的特性。在给水流量扰动下实际水位的变化曲线H2可以认为是H1和H3的合成。因此,水位控制对象的动态特性表现出有惯性的无自平衡能力的特点。
图3 炉膛热负荷变化对汽包水位的影响
此外,炉膛热负荷扰动对汽包水位的影响也是很大的(见图3)。此处的热负荷主要指的是燃烧率的扰动,例如燃料量的增加使炉膛负荷增强,从而使锅炉蒸发强度增大。若此时汽轮机负荷尚未增加,锅炉出口压力提高,蒸汽流量也相应增加,这样蒸汽流量大于给水流量,水位应该下降,但是蒸发强度增大的同时也使得水面下气泡容积增大,因此也会出现虚假水位现象。在这种情况下,蒸汽流量增加的同时气压也增大了,因而气泡体积的增加比蒸气流量扰动时要小一些,但持续时间长。
推荐阅读
汽包水位测量
汽包水位差压变送器测量误差的消除办法
怎样进行锅炉汽包水位差压变送器的快速排污
三冲量汽包水位控制原理及应用教程